
Original work by Brian Ward

Study Pack for
Ceebot

Part B
Weeks 5-8

 Programming
 Concepts
 CO452

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 2 of 37 Based on the original work by Brian Ward

Contents

Page 3: Introduction and useful things to know

Page 5: Week 5 Technical notes

Page 6: Week 5 Class exercises

Page 10: Week 5 Independent exercises

Page 11: Week 6 Technical notes

Page 12: Week 6 Class exercises

Page 16: Week 6 Independent exercises

Page 18: Week 7 Technical notes

Page 20: Week 7 Class exercises

Page 23: Week 7 Independent exercises

Page 24: Week 8 Project

Page 30: Appendix A: Ceebot information

Page 32: Appendix B: C# (console) information

Page 34: Assessment information and criteria

Page 36: Module plan (provisional)

Learning Outcomes

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 3 of 37 Ceebot Directed Study

 for the Programming Concepts module: CO452

General Introduction

Welcome to Programming Concepts

 The CO452 module plan and method of assessment for this module is detailed at the
back of this booklet, and you will also find the assessment criteria there.
We want you to enjoy this module and achieve a good result. Therefore it is important
that you read the module plan and assessment criteria at your leisure.

 You will need an electronic A4 logbook to record your work. Please get this up and
running as soon as possible.
Classwork will be checked each week, and should be recorded in your logbook.

 You start this module by using Ceebot, a highly visual environment for learning
fundamental programming concepts. It uses a C++/C#/Java programming style, so
principles learnt here will transfer easily to other programming areas. Hopefully you will
also find Ceebot fun to use. The first few exercises should be fairly easy, but you will
find that they get more challenging in later weeks. Near the end of the module you will
be introduced to the C# language .Good Luck!

 In the first introductory session you will learn the essentials of working with Ceebot.
Then you will progress by using the most important principles of programming.

 Please Note: There are hundreds of exercises in the Ceebot package. You are NOT
expected to complete them ALL! The exercises that you need to complete will be
explained here in this document. Of course you CAN do the others if you want to!

 For your convenience, the details of each task are summarised for you in this booklet,
but you will also find information by pressing the [F1] key during an exercise. Using the
[F2] key will bring up general support for the current chapter.

 If you wish, you will be able to purchase a copy of Ceebot and the exercises for
your own personal use (for a nominal charge).

On successful completion of the module the student will be able to:

 Analyse a simple requirement in a structured manner in order to
establish a strategy to solve the current problem

 Design, document, implement and test reliable, maintainable
programs as solutions to simple problems

 Use structured techniques of design and implementation and good
documentation practice

Make effective use of software development tools when implementing fit-
for-purpose solutions

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 4 of 37 Based on the original work by Brian Ward

Classwork
Remember, you do NOT have to do all the Ceebot exercises in the package.
The ones you need to attempt are detailed here in this booklet.

You must use the Standard set of exercises. Try others afterwards if you want to.

The first thing to keep in mind is that when you have selected an exercise and it has loaded:

 the [F1] key will always bring up the instructions for the current exercise.
 the [F2] key will always give you more general help with the chapter and the

instructions you may need to use to complete a task..

This week you are to try to complete some tasks in class from the first few Ceebot chapters:
 Ask for help if you need it.

 Show your solutions to your lecturer as you complete them
 always include comments in your code (ask your lecturer how to do this)
 You should include the following information in comments at the top of each program:

// Programmer’s name: and ID:
// Course:
// Week No: and Exercise No:
// Date:

 print out your finished code, and put this into your logbook with appropriate headings
 (Note .. you can cut and paste into MS Word or WordPad for later printing)

Your Log Book
You should try to organise your log book clearly and logically.

 Put Unit Headings and Task Headings.
 Give a brief description of the task
 Stick in your commented source code solution
 You may sometimes need other documentation such as algorithms or test plans.
 Add brief comments as to your success or otherwise and any problems that occurred

This will become more important in later chapters.

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 5 of 37 Ceebot Directed Study

The Technical Bit

Functions using Ceebot
Functions can be used to break up large programs into smaller, more manageable units that
can be reused over and over again. They can also be used to return a result back to the
main program,.

e.g. Here we define a function called DoSomething() and call it from the MainProgram.

Functions are particularly useful when designing LARGE programs because the program can
be divided up into smaller, easier-to-handle units (i.e. functions)

Week 5

Functions

 1

extern void object::MainProgram()
{
 DoSomething() ; // call the DoSomething() function
}
//***************************
void object::DoSomething() // define the DoSomething() function
{

 message ("Now entering the DoSomething function");
// put statements to be done here

}

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 6 of 37 Based on the original work by Brian Ward

Ceebot Task 18.1: A Square Function

Design a function called OneSquare() and use it to draw several different squares, all having
3 metre sides.
Your task:

 First of all write a function that will draw a single square. You should put the function
underneath the main part of the program. (see below for an incomplete version)

 Now in the main program (at XXX above) you need to put the instruction to call the

OneSquare() function. To do this you just use the function name with its brackets …
like this:

OneSquare();
 Try running the program .. you will need to put 2 more instructions inside the

OneSquare() for loop to get it to work
correctly.

 Now use the OneSquare() function to

draw 3 different colour squares, each
separated by 4 metres. Here is the
algorithm to use in your main program

 Your solution should have one

OneSquare() function that is used 3 times.
 Test it to see if it works

extern void object::Task18_1()
{
 // XXX call the function here
}
//***************************
void object::OneSquare() // define OneSquare() function
{
 pendown();
 for (int i=0; i<4; i++)
 {
 // put 2 more instructions here
 }
 penup();
}

Algorithm
1. set colour to red
2. draw one square
3. move 4 metres
4. set colour to blue
5. draw one square
6. move 4 metres
7. set colour to green
8. draw one square

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 7 of 37 Ceebot Directed Study

Ceebot Task 18.2: The Step Function (1)

Use a Step() function to draw a rising staircase.

Your task:
 First of all write a function that will just draw one step. This is a

horizontal line of 2 metres followed by a vertical line of 2 metres, like :

 Now using a for loop in your main program, call the

step function 5 times so that you draw a red
staircase consisting of 5 steps:

 Your solution should have one Step() function that is

called 5 times from the main program

 Use the fill() or fillall() instruction to fill your stage
with a suitable colour before drawing (see unit 3.7)

Ceebot Task 18.2: The Step Function (2)

Modify the previous program to draw a step pyramid
Your task:

 This program requires 2 functions.
o StepUp() is the same as the Step() function in the previous

exercise. It draws one upwardstep.
o StepDown() draws one downward step, like this:

 Now using for loops in the main program, draw 5 upward steps followed

by 5 downward steps, producing a step pyramid like this:

 Your solution should have one StepUp() function and one StepDown() function, each
of them being called 5 times from the main program

 Test it to see if it works

 2

 3

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 8 of 37 Based on the original work by Brian Ward

Ceebot Task 18.5: Power Cell Functions

In this program you are to produce a PowerCell from a piece of TitaniumOre

Your task:
This is a larger program that divides naturally into 4 parts. Use functions for each part.
The 4 parts of the program are :

1. Get the TitaniumOre
2. Convert this into Titanium using the Converter.
3. Produce a PowerCell from the Titanium using the PowerPlant
4. Deliver it to the GoalArea

 The four functions can be given the following names (choose others if you want to):

GetOre();
ConvertOre();
ProduceCell();
Deliver();

 It is up to you to decide what to put into each function. Your best strategy is to
program one function at a time and test it to see if it works.

 Hint: You will need to use the radar() instruction in each function and you can use
this to find the TitaniumOre, the Converter, the PowerPlant or the GoalArea

How Long Must you Wait?
The Converter takes time to produce Titanium, so you must wait before picking it up.
Use a while loop with radar .. a null result means NO Titanium detected yet (see below)

 while (radar(Titanium) == null)
 {
 wait(0.1); // wait until radar detects Titanium
 }

 include this wait loop in the appropriate function
 use a similar method to wait for the PowerPlant to do its job

Ceebot Task 18.6: Fly Using
Functions
Get to the island GoalArea, using functions to

program the 3 main parts

Your task:
 Write a program that calls 3 functions
 Use these algorithms to help:

 4

 5

1. Get the TitaniumOre
2. Convert this into Titanium using the Converter.
3. Produce a PowerCell from the Titanium using the PowerPlant
4. Deliver it to the GoalArea

1. Take Off
2. Fly to the island
3. Land

TakeOff
 1. Start Climbing
 2. Loop while altitude < 10 metres

 pause
 End Loop
 3. Stabilise altitude

FlyToIsland
1. Use radar to detect GoalArea
2. Turn in this direction
3. Calculate distance to GoalArea
4. Move this distance

Land
 1. Start Descending
 2. Loop while altitude > 0 metres

 pause
 End Loop
 3. Stop Jet

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 9 of 37 Ceebot Directed Study

More Functions
 When you have got this program to work, add another function, called FlyToMe()

o This should detect you (the astronaut) by using the radar with category Me and
then fly towards you before flying to the island

 Then add a fifth function called BuzzMe() that will give you a scare:
o This should descend slowly to about 5 metres above you (see hint below)

 Hint for BuzzMe()
 the z-coordinate is the height above sea level, so

o this.position.z is the z coordinate of the robot
o item.position.z is the z coordinate of any object (item) detected by radar.

Ceebot Task 18.4: Flower
Power
Call a Square() function (see 18.1) inside a

loop to draw a flower (sort of!)
Press [F1] to see instructions for this.

Week 5: Independent Study (3 Tasks)

The following exercises will be marked. Attempt them
outside of class, and copy your code, as well as
screenshots, and algorithms into a logbook. You will be
required to submit this logbook electronically

 6

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 10 of 37 Based on the original work by Brian Ward

Ceebot Task 19.3: One More Flower

Use a function Circle that draws one small circle
and use it to produce a circle of petals like the one

shown here. Press [F1] for details

Your task:

1. First design the Circle function to draw one circle
2. Then use a loop in your main program to call the

function in a circular way

Extra
 Try to get the program to draw alternate red and yellow circles for the petals.
 Can you design a better petal shape (see 19.5)

Ceebot Task 19.4: Triangle Function

You are to draw a Maltese Cross, using a Triangle
function

Your task:

1. You should start by creating 2 functions:

MoveToCentre()
This function should move the robot approximately to
the centre of the floor space.
The robot should end up facing in the same direction as it started.

Triangle()
This should use a for loop to draw one equilateral triangle with sides 5 metres long.

2. You should then test your 2 functions by calling them from your main program.

3. Now modify your main program so it uses a loop to call the Triangle() function 4 times
in order to draw a Maltese Cross:

Extra

 Copy your program into another editor slot and modify it to
draw a Hexagon:

Put commented source codes and screenshots into the log book

Ceebot Task 18.7: Lurking Ants
There are 5 AlienAnts lurking on some distant
islands. You must program a flying shooter robot to
destroy them using a function called

DestroyOneAnt

Your task:
Write a function to destroy one ant. Then use a loop in the main
program to call it 5 times. The function should:

 8

 7

 9

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 11 of 37 Ceebot Directed Study

 Use radar to detect an AlienAnt
 Fly up or down to reach the same height as the ant (use z-coordinates, see above)
 Turn towards the ant
 Move close (say within 10 metres)
 Fire to destroy the ant

Put commented source code into the logbook

